Search results for "Invertebrate Microbiology"
showing 10 items of 42 documents
Bacillus thuringiensis Vip3Aa Toxin Resistance in Heliothis virescens (Lepidoptera: Noctuidae)
2017
ABSTRACT Laboratory selection with Vip3Aa of a field-derived population of Heliothis virescens produced >2,040-fold resistance in 12 generations of selection. The Vip3Aa-selected (Vip-Sel)-resistant population showed little cross-resistance to Cry1Ab and no cross-resistance to Cry1Ac. Resistance was unstable after 15 generations without exposure to the toxin. F 1 reciprocal crosses between Vip3Aa-unselected (Vip-Unsel) and Vip-Sel insects indicated a strong paternal influence on the inheritance of resistance. Resistance ranged from almost completely recessive (mean degree of dominance [ h ] = 0.04 if the resistant parent was female) to incompletely dominant (mean h = 0.53 if the resistan…
Effects of Bacillus thuringiensis δ-Endotoxins on the Pea Aphid ( Acyrthosiphon pisum )
2009
ABSTRACT Four Bacillus thuringiensis δ-endotoxins, Cry3A, Cry4Aa, Cry11Aa, and Cyt1Aa, were found to exhibit low to moderate toxicity on the pea aphid, Acyrthosiphon pisum , in terms both of mortality and growth rate. Cry1Ab was essentially nontoxic except at high rates. To demonstrate these effects, we had to use exhaustive buffer-based controls.
Integrative Model for Binding of Bacillus thuringiensis Toxins in Susceptible and Resistant Larvae of the Diamondback Moth (Plutella xylostella)
1999
ABSTRACT Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptib…
Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).
2007
ABSTRACT Laboratory-selected Bacillus thuringiensis -resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea , a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance se…
Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptib…
2006
ABSTRACT Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the …
Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea and Spodoptera exigua
2005
ABSTRACT Binding studies using 125 I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera , Helicoverpa zea , and Spodoptera exigua . Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.
Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins
2001
ABSTRACT Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth ( Plutella xylostella ) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that…
Variation in Susceptibility to Bacillus thuringiensis Toxins among Unselected Strains of Plutella xylostella
2001
ABSTRACT So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth ( Plutella xylostella ). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected st…
Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae)
2004
ABSTRACT In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125 I-labeled Cry1Ab protein ( 125 I-Cry1Ab) and 125 I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in com…
High Genetic Variability for Resistance to Bacillus thuringiensis Toxins in a Single Population of Diamondback Moth
2001
ABSTRACT The long-term benefit of insecticidal products based on Cry toxins, either in sprays or as transgenic crops, is threatened by the development of resistance by target pests. The models used to predict evolution of resistance to Cry toxins most often are monogenic models in which two alleles are used. Moreover, the high-dose/refuge strategy recommended for implementation with transgenic crops relies on the assumption that the resistance allele is recessive. Using selection experiments, we demonstrated the occurrence in a laboratory colony of diamondback moth of two different genes (either allelic or nonallelic) that confer resistance to Cry1Ab. At the concentration tested, resistance…